Mugberia Gangadhar Mahavidyalaya
 Surprise Class Text Examination :: Mathematics:: B.Sc SEM-IV
 Fourier Series: paper-CT9 (2019)
 Total Marks : $\quad 26$

Group-A: Answer any three questions $\quad 5 \times 3=15$

1. Expand the function $f(x)=e^{x}-1$ in a Fourier series in $[0,2 \pi]$. Hence show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}=$ $\frac{1}{2}[\pi \operatorname{cosech} \pi-1]$.
2. If $f(x)=(\pi-|x|)^{2}$ on $[-\pi, \pi]$, prove that the Fourier series of f is given by

$$
\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}} .
$$

Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.
3. Obtain the Fourier cosine series for the even function $f(x)=|x|$ on $[-\pi, \pi]$.
4. Expand the function $\sin c x$ on $[0, \pi]$ in a Fourier Cosine series, where c is not an integer.
5. Prove that for $0 \leq x \leq \pi$
$x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\cdots\right)$. Hence deduce that
$x=\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right), 0 \leq x \leq \pi$.
Group-B: Answer any one question $\quad 5 \times 1=5$

1. State and Prove the Parseval's Identity.
2. If the series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly to f on $[-\pi, \pi]$, then it is the Fourier series for f in $[-\pi, \pi]$.

$$
\text { Group-C: Answer any three questions } \quad 2 \times 3=6
$$

1. State the Fourier Series.
2. State the Dirichlet's Conditions
3. Examine if the trigonometric series $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ is a Fourier series in $[-\pi, \pi]$.
4. Examine if the trigonometric series $\sum_{n=1}^{\infty} \frac{\cos n x}{\sqrt{n}}$ is a Fourier series in $[-\pi, \pi]$.
